Vibrational Spectroscopy
|
In my research, I am developing methods to predict vibrational spectra of condensed phase systems from ab initio simulations (no empirical parameters or experimental input required). During the last years, my co-workers and me were able to publish the first-ever ab initio prediction of a liquid phase Raman Optical Activity (ROA) spectrum as well as of a liquid phase resonance Raman spectrum, which are both based on novel approaches we have developed. My developments on predicting vibrational spectra were awarded with the Hellmann prize 2021. |
Are you interested in the algorithms behind computing spectra from molecular dynamics simulations? Some of them are explained in Section V of our recent open access article about the TRAVIS program package. Please have a look:
M. Brehm, M. Thomas, S. Gehrke, B. Kirchner:
“TRAVIS – A Free Analyzer for Trajectories from Molecular Simulation”,
J. Chem. Phys. 2020, 152 (16), 164105, DOI 10.1063/5.0005078.
Our methods for computing spectra rely heavily on the Voronoi integration approach which we have developed in 2015. It yields molecular electromagnetic properties (such as the electric dipole vector) via integration of the total electron density within Voronoi cells.
Tutorial on Computing Spectra
Below, I present a new version of our tutorial on computing vibrational spectra of bulk phase systems with CP2k and TRAVIS. The tutorial gives a step-by-step explanation of how to install the software, decide for a system, and compute the infrared, Raman, VCD, and ROA spectra on the basis of AIMD simulations. Please download:
An updated version of the tutorial which also covers our newly published method to predict resonance Raman spectra will be uploaded in the next weeks.
Please also see the homepage of the bqb file format and bqbtool.
— Related Publications —
13 of my publications are related to vibrational spectroscopy:
The numbers in front of the articles below refer to the full chronological publication list.
57 | M.-A. Codescu, T. Kunze, M. Weiß, M. Brehm, O. Kornilov, D. Sebastiani*, E. T. J. Nibbering*: "Ultrafast Proton Transfer Pathways Mediated by Amphoteric Imidazole" J. Phys. Chem. Lett. 2023, 14, 4775–4785. (2 citations, DOI 10.1021/acs.jpclett.3c00595 ) ⭳Bib | |
54 | R. Chahal*, S. Roy, M. Brehm, S. Banerjee, V. Bryantsev, S. Lam*: "Transferable Deep Learning Potential Reveals Intermediate-Range Ordering Effects in LiF–NaF–ZrF4 Molten Salt" JACS Au 2022, 2 (12), 2693–2702. (18 citations, DOI 10.1021/jacsau.2c00526 ) ⭳Bib | |
51 | Y. Yang, J. Cheramy, M. Brehm*, Y. Xu*: "Raman Optical Activity of N-Acetyl-L-Cysteine in Water and in Methanol: The “Clusters-in-a-Liquid” Model and ab initio Molecular Dynamics Simulations" ChemPhysChem 2022, 23 (11), e202200161. (9 citations, DOI 10.1002/cphc.202200161 ) ⭳Bib |
49 | S. Roy, M. Brehm, S. Sharma, F. Wu, D. Maltsev, P. Halstenberg, L. Gallington, S. Mahurin, S. Dai, A. Ivanov*, C. Margulis*, V. Bryantsev*: "Unraveling Local Structure of Molten Salts via X-Ray Scattering, Raman Spectroscopy, and ab initio Molecular Dynamics" J. Phys. Chem. B 2021, 125 (22), 5971–5982. (31 citations, DOI 10.1021/acs.jpcb.1c03786 ) ⭳Bib | | |
47 | M.-A. Codescu, M. Weiß, M. Brehm, O. Kornilov, D. Sebastiani*, E. T. J. Nibbering*: "Switching Between Proton Vacancy and Excess Proton Transfer Pathways in the Reaction Between 7-Hydroxyquinoline and Formate" J. Phys. Chem. A 2021, 125 (9), 1845–1859. (9 citations, DOI 10.1021/acs.jpca.0c10191 ) ⭳Bib | |
40 | M. Brehm*, M. Thomas, S. Gehrke, B. Kirchner: "TRAVIS – A Free Analyzer for Trajectories from Molecular Simulation" J. Chem. Phys. 2020, 152 (16), 164105. (414 citations, DOI 10.1063/5.0005078 ) ⭳Bib | |
36 | M. Brehm*, M. Thomas: "Computing Bulk Phase Resonance Raman Spectra from ab initio Molecular Dynamics and Real-Time TDDFT" J. Chem. Theory Comput. 2019, 15 (7), 3901–3905. (15 citations, DOI 10.1021/acs.jctc.9b00512 ) ⭳Bib |
31 | M. Brehm*, D. Sebastiani: "Simulating Structure and Dynamics in Small Droplets of 1-Ethyl-3-Methylimidazolium Acetate" J. Chem. Phys. 2018, 148, 193802. (21 citations, DOI 10.1063/1.5010342 ) ⭳Bib |
26 | M. Brehm*, M. Thomas: "Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations" J. Phys. Chem. Lett. 2017, 8 (14), 3409–3414. (28 citations, DOI 10.1021/acs.jpclett.7b01616 ) ⭳Bib |
23 | M. Thomas*, M. Brehm, B. Kirchner*: "Voronoi Dipole Moments for the Simulation of Bulk Phase Vibrational Spectra" Phys. Chem. Chem. Phys. 2015, 17, 3207–3213. (96 citations, DOI 10.1039/C4CP05272B ) ⭳Bib |
19 | M. Thomas, M. Brehm, O. Hollóczki, Z. Kelemen, L. Nyulászi, T. Pasinszki*, B. Kirchner*: "Simulating the Vibrational Spectra of Ionic Liquid Systems: 1-Ethyl-3-Methylimidazolium Acetate and its Mixtures" J. Chem. Phys. 2014, 141, 024510. (81 citations, DOI 10.1063/1.4887082 ) ⭳Bib |
14 | M. Thomas, M. Brehm, R. Fligg, P. Vöhringer, B. Kirchner*: "Computing Vibrational Spectra from ab initio Molecular Dynamics" Phys. Chem. Chem. Phys. 2013, 15, 6608–6622. (423 citations, DOI 10.1039/C3CP44302G ) ⭳Bib | |
9 | K. Wendler, M. Brehm, F. Malberg, B. Kirchner, L. Delle Site*: "Short Time Dynamics of Ionic Liquids in AIMD-Based Power Spectra" J. Chem. Theory Comput. 2012, 8 (5), 1570–1579. (70 citations, DOI 10.1021/ct300152t ) ⭳Bib |