Vibrational Spectroscopy
![]() |
In my research, I am developing methods to predict vibrational spectra of condensed phase systems from ab initio simulations (no empirical parameters or experimental input required). During the last years, my co-workers and me were able to publish the first-ever ab initio prediction of a liquid phase Raman Optical Activity (ROA) spectrum as well as of a liquid phase resonance Raman spectrum, which are both based on novel approaches we have developed. |
Are you interested in the algorithms behind computing spectra from molecular dynamics simulations? Some of them are explained in Section V of our recent open access article about the TRAVIS program package. Please have a look:
M. Brehm, M. Thomas, S. Gehrke, B. Kirchner:
“TRAVIS – A Free Analyzer for Trajectories from Molecular Simulation”,
J. Chem. Phys. 2020, 152 (16), 164105, DOI 10.1063/5.0005078.
Our methods for computing spectra rely heavily on the Voronoi integration approach which we have developed in 2015. It yields molecular electromagnetic properties (such as the electric dipole vector) via integration of the total electron density within Voronoi cells.
Tutorial on Computing Spectra
Below, I present a new version of our tutorial on computing vibrational spectra of bulk phase systems with CP2k and TRAVIS. The tutorial gives a step-by-step explanation of how to install the software, decide for a system, and compute the infrared, Raman, VCD, and ROA spectra on the basis of AIMD simulations. Please download:
File | Type / Size | Last Changed |
---|---|---|
Computing Bulk Phase Vibrational Spectra with CP2k and TRAVIS (2018) | .pdf, 2.1 MiB | Oct 22 2018 |
Collection of input files from the appendix |
.tar.gz, 6.3 kiB | Oct 22 2018 |
Slides from my presentation in Paderborn (Aug 2018) |
.pdf, 7.6 MiB | Aug 29 2018 |
An updated version of the tutorial which also covers our newly published method to predict resonance Raman spectra will be uploaded in the next weeks.
Please also see the homepage of the bqb file format and bqbtool.