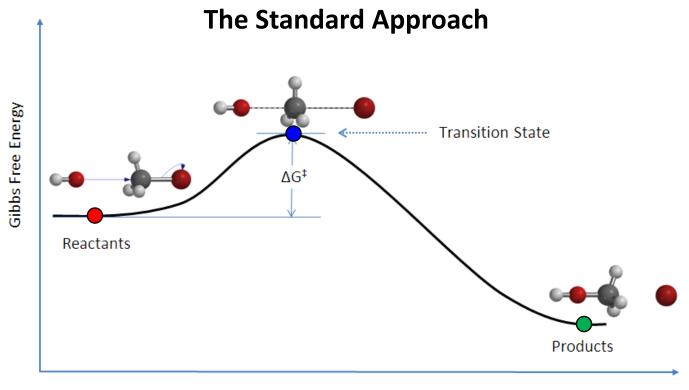
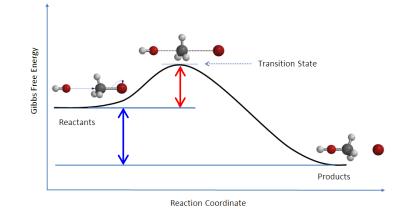

Computing Liquid Phase Free Energy Profiles from *ab initio* Molecular Dynamics Simulations


Martin Brehm

Martin-Luther-Universität Halle–Wittenberg

https://brehm-research.de/

Outline


- **1.)** The Standard Approach to Compute Reactions
- 2.) An Example Reaction
- **3.) Introduction to Simulation Techniques**
- 4.) Results and Conclusions

Reaction Coordinate

1.) Optimize reactand and product complex geometries

2.) Search and optimize transition state (e.g. via Nudged Elastic Band)

What do we obtain?

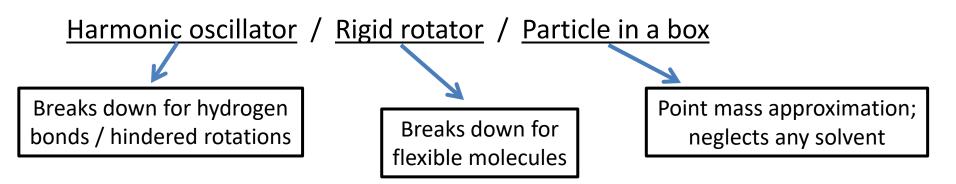
- **1.)** Equilibrium Constant: $\mathbf{K} = \exp(-\Delta \mathbf{G} / \mathbf{RT})$
- **2.)** Rates of forward / backward reactions: $k = A \cdot exp(-\Delta G^{\dagger}/RT)$

If there exist multiple reactions (e.g. different stereo-isomers):

Can find out which reaction is <u>thermodynamically / kinetically favored</u>! Ratio of K or *k* can even give <u>quantitative selectivity</u> (e.g., ee% or cis:trans)!

How to describe Free Enthalpy?

Quantum chemical calculation gives only enthalpy differences ΔH

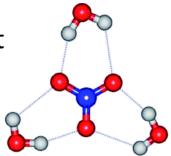

But we need $\Delta G \dots$

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \cdot \Delta \mathbf{S}$

Ok, how to obtain ΔS ?

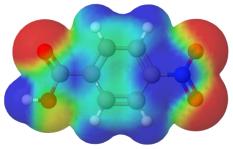
Very hard to obtain accurate value (sampling of full phase space!)...

Use **very crude** approximations for partition sum instead:



How to describe Solvent Influence?

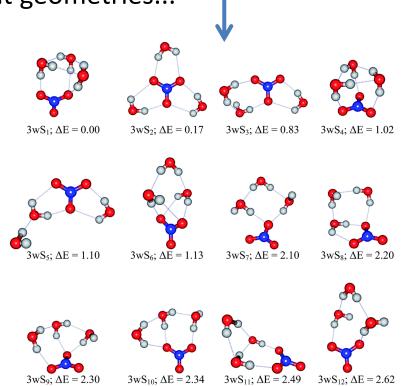
The whole approach only works for molecules in vacuum!


a) Microsolvation

Put an *(arbitrary)* small number of explicit solvent molecules to places that should be solvated.

b) Implicit Continuum Solvation Models

Put the whole molecule into a cavity with the desired dielectricity constant ϵ .



How to describe Solvent Influence?

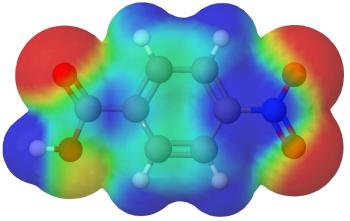
a) Microsolvation

- Number of required solvent molecules not known
- Even for fixed number: Many different geometries...-
- Different solvation of educt, TS, product often <u>breaks the results</u>
- → Even if it works: Requires a lot of experience and manual fine-tuning

Often not an option :-/

How to describe Solvent Influence?

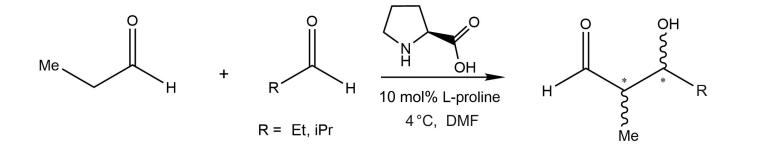
b) Implicit Continuum Solvation Models

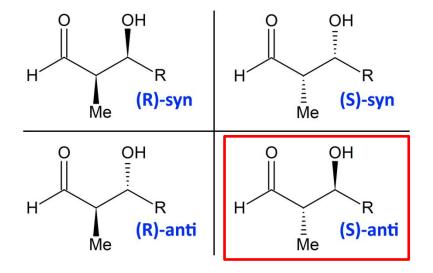

Examples: COSMO, PCM

Put the whole molecule into a cavity with the desired dielectricity constant ϵ .

Very crude approximation, neglects all **directed** solvent effects (hydrogen bonds, salt bridges, solvent entropy changes, ...)

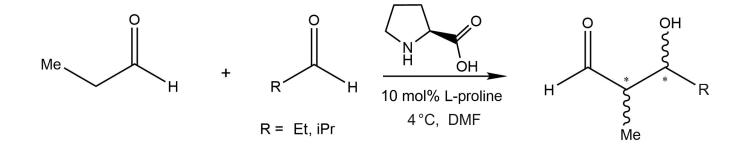
Very easy to use (only requires ε of solvent).

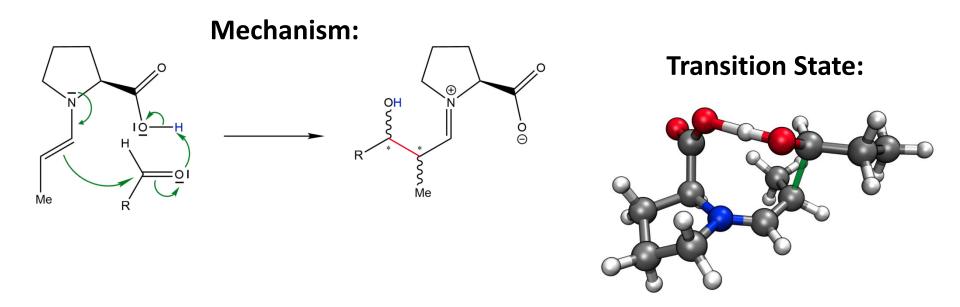

 \rightarrow Most studies use it.


Conclusion

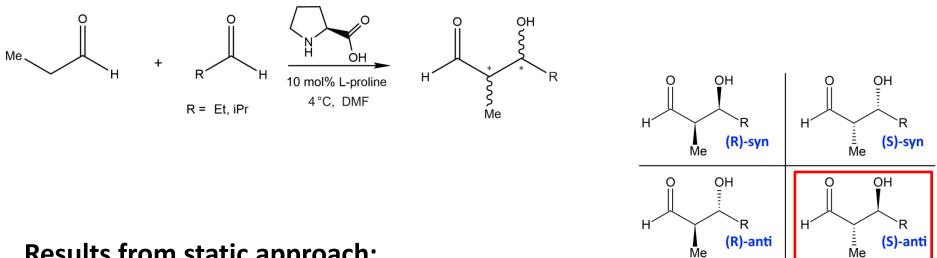
- Approximation for ΔG is very crude; fails for hydrogen bonds, hindered rotations, flexible molecules, ...
- Implicit solvent model is very crude; neglects all directed solvent interactions (hydrogen bonds, salt bridges, ...)
- Solvent entropy (hydrophobic effect, ...) is completely neglected
- Approach works only for a single conformer at a time, no conformer sampling
- → It is surprising that it works at all! (as it does in 1000s of publications...)

Proline-Catalyzed Cross-Aldol Reaction




R	%ee	syn : anti	yield / %
Et	99	1:4	80
iPr	>99	1:24	82

A. B. Northrup, D.W.C. MacMillan: "The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes", J. Am. Chem. Soc. 2002, 124, 6798–6799.


Proline-Catalyzed Cross-Aldol Reaction

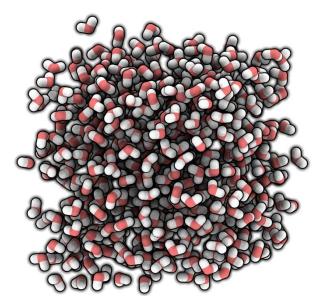
A. B. Northrup, D.W.C. MacMillan: "The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes", J. Am. Chem. Soc. 2002, 124, 6798–6799.

Proline-Catalyzed Cross-Aldol Reaction

Me

Results from static approach:

(implicit solvent DMF)


Product	$\Delta_{ m R} {f E}$ / ${f k} {f J} {f mol}^{-1}$	$\Delta_{ m R} {f G}$ / kJ mol $^{-1}$	$\Delta \mathbf{E}^{\ddagger}$ / kJ mol $^{-1}$	$\Delta \mathbf{G}^{\ddagger}$ / kJ mol $^{-1}$
(R)-anti	5.86	23.77	40.79	44.78
(R)-syn	21.50	39.60	78.22	88.63
(S)-anti	24.89	43.23	51.63	62.91
(S)-syn	22.74	36.28	75.67	90.88

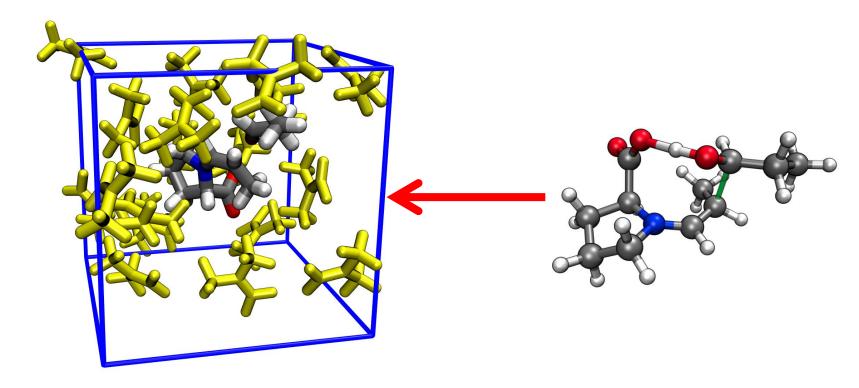
\rightarrow Fails completely

M. Weiß, M. Brehm: "Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence", Molecules 2020, 25 (24), 5861.

Molecular Dynamics (MD) Simulations

 Consider a (small) chemical system (up to ≈ 2000 atoms) in a periodic cell

- Compute the forces which act on all the atoms
- Move the atoms a bit by solving Newton's equations of motion:


$$m_i \dot{\mathbf{v}}_i(t) = \mathbf{F}_i(\mathbf{r}_i) = -\nabla V(\mathbf{r}_i)$$
$$\dot{\mathbf{r}}_i(t) = \mathbf{v}_i(t)$$

• Repeat many times

How to Describe the Solvent Effect?

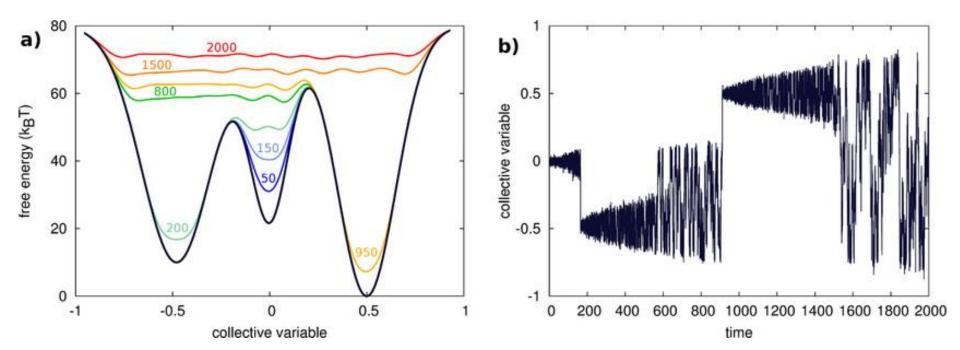
Just include all solvent molecules explicitly! No "cheap trick" as before...

Periodic cell of reactand mixture in 18 DMF molecules:

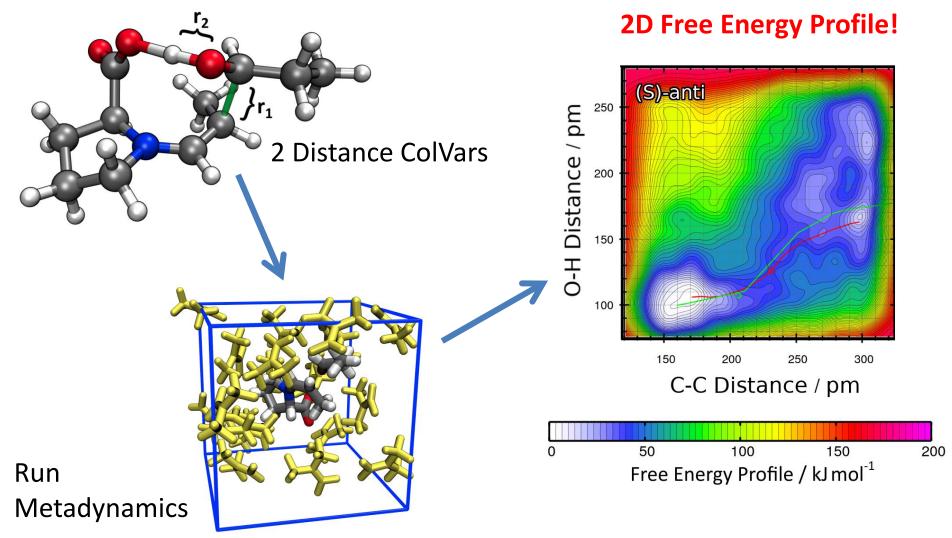
How to Obtain ΔG from Molecular Dynamics?

 \rightarrow Free energy sampling methods

\rightarrow Metadynamics


A. Laio, M. Parrinello: "Escaping Free-Energy Minima", *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99 (20)*, 12562.

Metadynamics Simulations


Define one or more "Collective Variables" (reaction coordinates)

Let the dynamics run; place repulsive bias potentials at current position to push the system away

 \rightarrow Efficient sampling of the full relevant configuration space

Metadynamics Simulations

How to Avoid Unwanted Side Reactions?

Our Metadynamics involves bond breaking.

Resulting intermediates are highly reactive...

 \rightarrow Either react with solvent or break apart into pieces

We developed the "Hybrid AIMD" (HyAIMD) approach to avoid this.

• Place an empirical repulsive potential on all pairs of atoms which shall **not** form bonds: $\begin{bmatrix} r \\ r \end{bmatrix}^{12} \\ \begin{bmatrix} r \\ r \end{bmatrix}^{6} \end{bmatrix}$

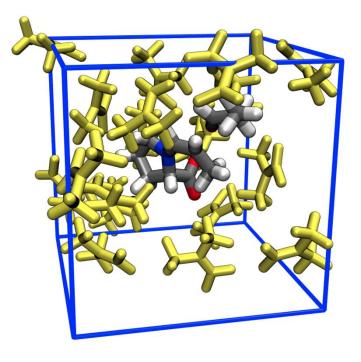
$$E_{ij}^{\mathrm{LJ}}(r) := 4\epsilon_{ij} \left[\left(\frac{r}{\sigma_{ij}}\right)^{12} - \left(\frac{r}{\sigma_{ij}}\right)^{6} \right]$$

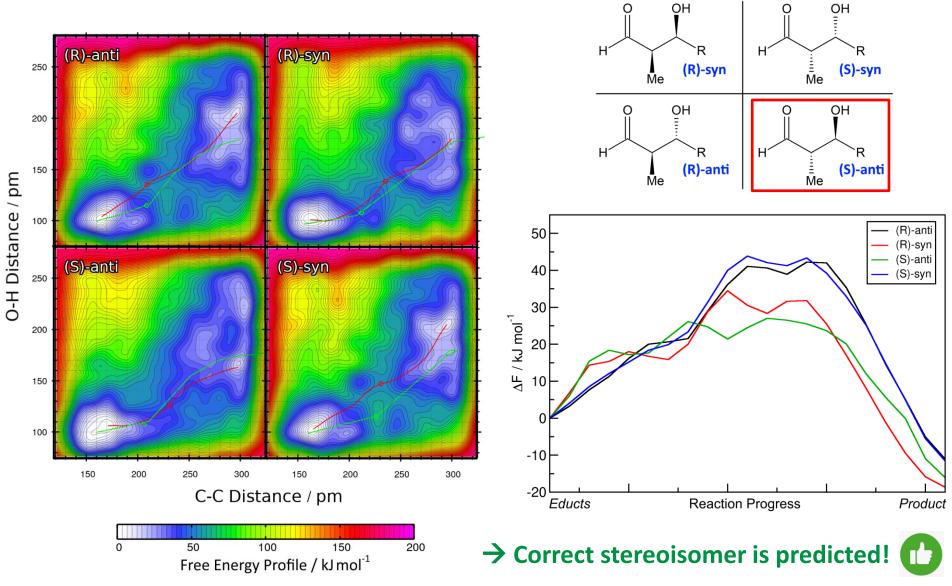
• Place an empirical spring potential on all bonds which shall remain **intact**: $E^{\text{bond}}(r) := \frac{k}{2} (r - r_0)^2$

Simulation Protocol

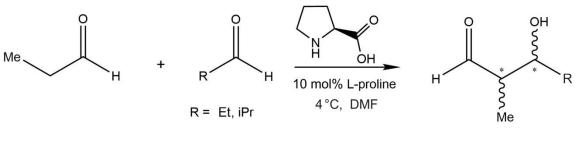
We started Metadynamics simulations for the four different stereoisomers.

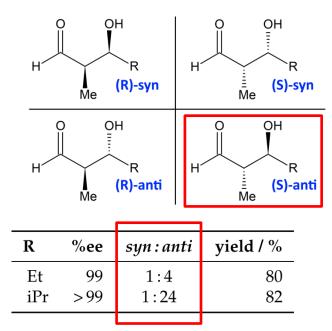
Reactands + 18 DMF molecules, cell size 14 Angstrom, 350 K.


CP2k package, HyAIMD, BLYP-D3.


TRAVIS for analyzing the trajectories.

250 ps total simulation time,30'000 core hours per isomer.


Around 3 months runtime on a HPC node with 16 cores per isomer.


```
https://www.cp2k.org
http://www.travis-analyzer.de
```


Can we Capture the Substituent Effect?

Experiment

Simulation R = Et

Product	$\Delta_{ m R} {f F}$ / kJ mol $^{-1}$	$\Delta \mathbf{F}^{\ddagger}$ / kJ mol $^{-1}$
(R)-anti	-11.06	42.24
(R)-syn	-18.66	31.79
(S)-anti	-17.71	25.40
(S)-syn	-11.52	43.84

Simulation R = iPr

Product	$\Delta_{ m R} {f F}$ / ${f k} {f J} {f mol}^{-1}$	$\Delta \mathbf{F}^{\ddagger}$ / kJ mol $^{-1}$
(R)-anti	-14.33	36.54
(R)-syn	-9.35	39.35
(S)-anti	-35.63	24.29
(S)-syn	-13.70	22.59

Substituent effect is correctly described!

Article published in 2020:

Open Access Article

Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence

by 😫 Moritz Weiß 🖾 💿 and 😫 Martin Brehm * 🖾 💿

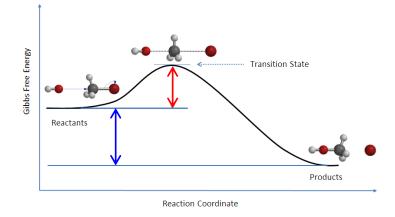
Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany

* Author to whom correspondence should be addressed.

Academic Editor: Benedito José Costa

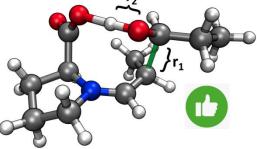
Molecules 2020, 25(24), 5861; https://doi.org/10.3390/molecules25245861

Received: 13 October 2020 / Revised: 5 December 2020 / Accepted: 8 December 2020 / Published: 11 December 2020


(This article belongs to the Special Issue Describing Bulk Phase Effects with Ab Initio Methods)

M. Weiß, M. Brehm: "Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence", *Molecules* **2020**, *25* (*24*), 5861.

Conclusions I


 The standard approach for computing reactions is still geometry optimization → transition state search → frequency calculation

- Many crude approximations:
 - Implicit solvent model \rightarrow no directed solvent interactions
 - Solvent entropy missing (hydrophobic effect, ...)
 - Can break down if hydrogen bonds or hindered rotations occur
 - No conformer sampling, only one conformer at a time
- \rightarrow Surprising that it indeed works so often

Conclusions II

- Metadynamics on top of DFT-based *ab initio* MD (AIMD) can be a good *(but expensive)* alternative for cases where the classical approach fails
- Unwanted side reactions are an issue; we developed the Hybrid AIMD (HyAIMD) scheme to avoid them.
- Concerning the proline-catalyzed Aldol reaction, we were able to give an *ab initio* prediction for the stereoselectivity for the first time
- Both the product stereochemistry and the influence of the substituent are correctly predicted

• The approach should work for all kinds of organic reactions in solvent; we are currently studying other examples

Can it be done with ORCA?

Metadynamics: yes, since ORCA 5.0

Timestep 0.5_fs Initvel 350_K Thermostat NHC 350_K Timecon 100.0_fs Dump Position Stride 1 Filename "trajectory.xyz"

tance Atom 0 Atom 1

Manage_Colvar Define 1 Distance Atom 0 Atom 1
Manage_Colvar Define 2 Distance Atom 2 Atom 3

Metadynamics Colvar 1 Scale 1.0_A Wall Lower 3.0 50.0 Upper 10.0 50.0 Range 0.0 15.0 100 Metadynamics Colvar 2 Scale 1.0_A Wall Lower 1.0 50.0 Upper 8.0 50.0 Range 0.0 13.0 100 Metadynamics HillSpawn 40 0.5 0.5 Store 2000 Metadynamics WellTempered 6000_K Metadynamics Lagrange 100.0 10.0 200.0_K 10.0_fs

Restart IfExists Run 100000

HyAIMD approach: hopefully soon :-)

Acknowledgment

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

"AK Brehm"

Prof. Daniel Sebastiani

https://brehm-research.de/ Funding by DFG ("Eigene Stelle" + 1 PhD)