
- 1 -

bqbtool User Manual

A Lossless Compression Tool for Trajectories

of Atom Positions and Volumetric Data

Martin Brehm & Martin Thomas, 2018

Licensed under GNU LGPL v3

https://brehm-research.de/bqb

Manual Version: 01.10.2018

1. Introduction

The bqbtool is a command line utility which compresses simulation trajectories to the bqb

file format. Both standard trajectories (i. e., containing the position of the atoms) and

volumetric data trajectories (i. e., containing a grid of values, such as total electron density,

in every frame) can be compressed. The compression is lossless, which means that the

decompressed output will be bitwise identical to the original trajectory if the precision set by

the user matches the input data precision. Our approach reaches a compression ratio of

around 15:1 for position trajectories, and around 35:1 for volumetric trajectories. This is a

much larger compression ratio than achieved with standard file compressors such as bzip2.

For details on the compression algorithm and performance, including some examples and

benchmarks, please read (and cite) our article [1] which was published in September 2018:

M. Brehm, M. Thomas: "An Efficient Lossless Compression Algorithm for Trajectories of
Atom Positions and Volumetric Data", J. Chem. Inf. Model. 2018, in press,
DOI 10.1021/acs.jcim.8b00501

- 2 -

2. How to Obtain and Install

The homepage of the bqbtool and all other things related to the bqb format is

https://brehm-research.de/bqb

There, you can download the bqbtool and this manual for free. All parts of this project are

licensed under the GNU LGPL v3 license, and are therefore free software. They can even be

included into proprietary program packages (therefore „LGPL“), as long as the article [1] is

cited, and the authorship is displayed in the program documentation and at runtime. For

details, please see the LGPL license text. The bqbtool is written in C++ and currently contains

around 37 000 lines of (freely available) source code. It is platform independent and does not

require any external libraries.

Please note that the full bqbtool is integrated into the TRAVIS program package [2,3]. If you

have a recent version of TRAVIS (October 2018 or later), you don’t need to intall the bqbtool

at all. Just use the TRAVIS executable as if it was the bqbtool:

travis compress postraj in.xyz out.bqb

Apart from that, there are two ways how to obtain a working bqbtool:

 For systems running on Microsoft Windows, you can download one of the pre-compiled

executable files from our homepage. We offer executables for 32 bit and 64 bit operating

systems. We recommend to use the 64 bit version if possible, because it was built with a

more recent compiler and therefore will run faster.

 For Linux/Unix operating systems you can download an archive file with the source code

of bqbtool. Simply extract the archive, enter the directory, and type „make“. As bqbtool

does not require any external libraries, no setup and preparations should be required.

You only require a working C++ compiler (which should exist on every Unix system). To

modify compiler options, edit the Makefile.

In both cases, you obtain a single executable file with the name „bqbtool“. This is a

command line utility – it does not possess a user interface. You pass options to the tool via

command line arguments. For a short overview of supported command line options, simply

call the executable without any further arguments.

We are also planning to publish a C++ library („libbqb“) which can be used to equip any

software package with support for reading and writing compressed bqb files. Then,

simulation programs such as CP2k or LAMMPS might directly write compressed trajectories,

while visualization programs such as VMD could directly read the compressed files without

prior decompression. It will take a few more months until the libbqb is ready for its first

public release (hopefully end of 2018). Please stay tuned.

- 3 -

3. Basic Usage

With the current version of the bqbtool, you can [compress/decompress] [binary

files/position trajectories/volumetric trajectories]. This makes up for exactly six different

possible operations. More operating modes (such as splitting/merging trajectories, compa-

ring files, checking file integrity) will be added in future releases. We guarantee that the bqb

file format retains forward/backward compatibility; therefore, you will be able to work with

your compressed bqb files with any future software version.

The general command line reads

bqbtool [compress/decompress] [postraj/voltraj/file] [options] [input] [output]

Make sure to put any options before the input/output file names.

3.1. Position Trajectories

To compress an existing position trajectory, simply enter

bqbtool compress postraj input.xyz output.bqb

Only XMol XYZ files [4] are currently supported as input trajectories. More formats will be

added in future releases.

Please use unwrapped trajectories; wrapping leads to discontinuities which significantly

reduce the compression efficiency (see article [1]).

If you want to compress only the first 100 steps of the trajectory, specify

bqbtool compress postraj –steps 100 input.xyz output.bqb

The working precision is set to 10-5 Angstrom by default. To reduce the precision to

10-3 Angstrom (increases compression ratio), use

bqbtool compress postraj –prec 3 input.xyz output.bqb

The bqbtool optimizes the compression parameters in the beginning of each compression

run to find the parameter set which yields maximal compression ratio. This can take some

time. To switch off this automated parameter optimization, add „-optimize 0“ to the

command line (before the input/output file names). To perform an even more exhaustive

search for good parameters, try „-optimize 3“. The default value is „-optimize 2“ for

position trajectories.

To decompress a bqb position trajectory, simply enter

bqbtool decompress postraj input.bqb output.xyz

Also here, only XMol XYZ files [4] are currently supported, and more formats will come.

To decompress only the first 100 steps, write in analogy to above

bqbtool decompress postraj -steps 100 input.bqb output.xyz

- 4 -

3.2. Volumetric Data Trajectories

A volumetric data trajectory is a sequence of uniform 3D grids containing real values. Typical

examples are electron densities from quantum chemical calculations, often stored in

Gaussian Cube file format [5]. Such volumetric trajectories are huge files, but are very useful,

e. g., for the computation of bulk phase vibrational spectra from MD simulations [6-8].

For volumetric trajectories, most instructions from the position trajectory part above still

hold. To compress a volumetric trajectory in Gaussian Cube file format [5], enter

bqbtool compress voltraj input.cube output.bqb

If you want to compress only the first 100 steps, you can add „-steps 100“ to the

command line, as explained above.

When compressing volumetric trajectories, the working precision is specified in relative

rather than absolute accuracy, i. e., number of significant digits. The default is to store 5

significant digits, as specified in the original Gaussian Cube format. To store 7 significant

digits instead (at the cost of lower compression ratio), add „-vsigni 7“. The maximum

allowed number of significant digits is 9.

Often, volumetric trajectories also contain atom positions, which are stored together with

the volumetric data. The absolute precision of the atom positions has a default value of 10-5

Angstrom. To set it to 10-3 Angstrom, add „-pprec 3“ to the command line.

As explained above, the bqbtool optimizes the compression parameters in the beginning of

each compression run to find the parameter set which yields maximal compression ratio.

This can take a lot of time for volumetric trajectories. To switch off this automated

parameter optimization, add „-optimize 0“ to the command line. To perform an even

more exhaustive search for good parameters, try „-optimize 2“ or even „-optimize 3“

(might take days...). The default value is „-optimize 1“ for volumetric trajectories.

To decompress a bqb volumetric trajectory, simply enter

bqbtool decompress voltraj input.bqb output.cube

Also here, you could specify „-steps 100“ to only decompress the first 100 steps.

3.3. Binary Files

You can also use the bqbtool to compress and decompress arbitrary binary files. The

compression ratio will be very similar to bzip2, because most of the algorithms are identical.

Therefore, there is no significant reason to use bqbtool instead of bzip2 for compressing

binary files... This was just implemented because it came at no additional coding effort :-)

bqbtool compress file input.any output.bqb

bqbtool decompress file input.bqb output.any

- 5 -

4. Advanced Usage

4.1. Log File and Multiple Instances

The bqbtool writes a log file to „bqbtool.log“. All screen output is also found in the log

file. If the file cannot be opened for writing, the program aborts execution right in the

beginning (be sure to have writing permission in the current directory). If already another

instance of bqbtool writes to this log file, the file will be garbled. Therefore, please make

sure to never run multiple instances of bqbtool at the same time in the same directory.

4.2. Re-using Compression Parameters

As described above, the bqbtool performs an automated tuning of compression parameters

in the beginning of each compression run. This can take a considerable amount of time. If

you want to compress many similar trajectories, it can be assumed that a good set of

compression parameters will work for all of them, and it would be a waste of time to redo

the parameter tuning in each run.

There are around 50 parameter which influence the compression ratio, and it would be

tedious to specify all of them in the command line (still, this is possible). For a description of

all these parameters, please see our article [1]. The bqbtool condenses all of those

parameters into a short alphanumeric code, called a „parameter key“. Such a key is written

to screen and log file after the automated tuning of parameters has finished, it contains all

the optimized parameters in packed form:

Parameter key: @1nzGImf2ekFo46

If you want to compress another trajectory with exactly the same parameter set, just specify

the parameter key in the command line:

bqbtool compress postraj -pkey @1nzGImf2ekFo46 input.xyz output.bqb

Specification of a parameter key automatically disables the automated parameter tuning (as

„-optimize 0“ would do), and therefore saves a considerable amount of time.

Parameter keys always start with a @ sign. Please note that keys from position trajectories

and volumetric trajectories cannot be swapped.

If you simply want to expand a parameter key to human-readable values without compres-

sing anything, you can use the „-dryrun“ command line option. It causes bqbtool to quit

directly before the actual operation would start. The parameters are written to screen

before. Then, also the output file can be omitted (but an input file is still required):

bqbtool compress postraj -pkey @1nzGImf2ekFo46 -dryrun input.xyz

Command line arguments are handled in the order they have been specified. If you want to

load a parameter key but want to change a few parameters, simply write the corresponding

arguments behind the „-pkey ...“ part. You will obtain a new modified parameter key.

- 6 -

4.3. Truncating small Volumetric Data Elements

Volumetric data trajectories are often used to store the electron density (from an ab initio

molecular dynamics simulation) along the trajectory. If a single molecule (or a cluster of

molecules) in vacuum was simulated, there are regions inside the simulation box where the

electron density is very small. One might expect that it decays to zero where no atoms are

present. However, as the volumetric data is stored with a fixed number of significant digits, it

will never become zero, but rather some very small values which essentially contain

numerical noise. As noise can neither be compressed nor predicted by extrapolation, this

significantly reduces the compression ratio. The bqbtool therefore offers to truncate all

volumetric data elements to zero if their absolute value is below a given threshold. Per

default, this threshold is set to 10-12, i. e., 10-12 is the smallest value above zero that can be

represented. To set this threshold to 10-6 instead, add „-veps 6“ to the command line. The

smallest possible threshold is 10-63, activated with „-veps 63“.

Strictly speaking, the algorithm is no longer lossless if it truncates small values. However,

these small values do not bear any physical meaning and are only numerical artifacts. Apart

from that, such small values in electron density only occur in gas phase simulations with

large vacuum regions. In bulk phase systems, the electron density never becomes so low at

any point.

4.4. Random Access and Key Frames

Our compression algorithm uses temporal extrapolation techniques to reach high

compression ratios. This requires the knowledge of a history of frames to decompress a

given frame. On the other hand, the bqb file format allows fast random access to individual

frames (see section 5.3 below). You could, e. g., easily obtain frame 1000 of a compressed

trajectory; but to decompress it, you would require the decompressed frames 995 - 999. As

each frame depends on its predecessors, you would have to start in frame 1 and decompress

the whole trajectory, until you reach frame 1000. This is of course not what „random access“

means...

To overcome this, the user can decide to introduce so-called „key frames“, which do not

depend on any preceding frames. Both the concept and the term are taken from video

encoding, where the same problem exists. As a compromise, such a key frame could be

stored every 100 frames. Then, in the worst, case, you would have to decompress 100

frames until you obtain your desired frame. A key frame could be also stored every 10

frames, but this would significantly reduce the compression efficiency (key frames are larger

because they can’t exploit knowledge on frame history). A key frame interval of 100 is

specified by adding „-keyframe 100“ to the command line. The default is to disable

writing of key frames, which is a reasonable setting if only sequential access will be required.

To allow for random access, you should change this value.

- 7 -

5. The bqb File Format

5.1. Introduction

Together with our compression algorithm, we also developed a file format to store the

compressed data, which we call the bqb format. The name bqb originally stood for „binary

cube“ (referring to Gaussian Cube files), but the current bqb format can store also other

types of data. Our format is very size-efficient. Even all the headers and control structures

are compressed, and the format is built as a stream of bits, not considering byte boundaries.

This ensures that not a single bit of storage space is wasted. On the other hand, the format

contains „robustness features“ such as magic numbers and CRC-32 codes, such that any

corruption of a file will be immediately recognized.

5.2. Why not HDF5?

We are often asked why we did not use HDF5 to store our compressed data. We indeed

considered this. However, HDF5 is based on a different philosophy. HDF5 is designed as a

multi-purpose format which can handle as many different applications as possible; its

primary design goals is its flexibility. Our bqb format developed here is not as flexible, it is

only intended for storage of trajectories from computer simulations. On the other hand, the

bqb format aims at the maximum compression efficiency, which it achieves by neglecting

flexibility to a certain degree. For example, HDF5 only offers compression of the payload

data, while all the headers and control structures of the format still occupy significant

storage space. The bqb format is completely compressed, and tries to save every single bit

even in the headers and control structures. Our format is not even based on byte

boundaries; it is a direct representation of a bit stream, which ensures that not a single bit

of storage space is heedlessly wasted. Due to these different design philosophies, we came

to the conclusion that none of the existing multi-purpose formats such as HDF5 are suitable

for our application.

5.3. Index Frame

bqb files typically possess a so-called „index frame“. This concept is heavily inspired by the

„catalog“ in the PDF file format. An index frame is essentially a list of frame lengths, types,

and offsets, such that fast random access to individual frames is possible without the need

for scanning the whole trajectory. The valid index frame is always located at the very end of

the file; all index frames in the middle of the file are simply ignored. This comes with a subtle

advantage: If additional frames shall be appended to an existing bqb file, they are simply

appended in the literal sense, and the old index frame is not modified. A new index frame is

written at the end of the appended frames. Therefore, it is possible to append content

without having to modify or overwrite/delete any part of the existing old file.

- 8 -

The existence of an index frame is optional; a bqb file is also valid without an index.

However, a missing index leads to many complications. Even simple quantities such as the

total frame count inside a bqb file are not known without an index (and to determine it, one

would have to traverse the full trajectory, such as in most other trajectory storage formats).

Therefore, the bqbtool always writes an index after compressing a file (and this can’t be

switched off).

In case you ask: Yes, the index frame is of course also compressed with the highest possible

compression ratio :-)

5.4. File Extensions

There exist five allowed file extensions for data in bqb format. These are „.bqb“, „.btr“,

„.blist“, and „.emp“. These extensions indicate different types of data in the compressed

files. However, this is only to guide the user. Technically, every kind of bqb file may carry

each of the mentioned extensions. In the following, a short description of each file extension

is given, including our recommendations on usage.

.bqb is the general file extension, without making a claim about the content of the file.

Originally, it was only intended for volumetric data trajectories.

.btr stands for „binary trajectory“, and shall be used for compressed position trajectories.

However, it is totally fine to use .bqb also for position trajectories.

.blist is a so-called list file. It is not a bqb file, but rather a text file which contains links to

multiple „true“ .bqb files after a headline. This is an efficient way to sequentially join several

bqb files. We recommend that all list files (and only list files) should carry this file extension

to avoid confusion. A description of list files follows below in section 5.5.

.emp stands for „electromagnetic properties“. It is a special type of bqb file, which stores

properties such as charge, electric dipole, electric quadrupole, magnetic dipole, etc. for each

atom in the system. TRAVIS [2,3] writes these files as intermediates in the process of

computing vibrational spectra [6-8]. As this format has very rigid specifications, you probably

should not use this file extensions for your own compressed files to avoid confusion.

- 9 -

5.5. List Files

Often, one wants to sequentially join several bqb files to a long trajectory (e. g., if the

simulation was carried out in multiple batches). An easy way to do so would be to join the

individual bqb files on filesystem level („cat file1.bqb file2.bqb > large.bqb“).

This is in principle valid (because bqb files are simply a concatenation of individual bqb

frames), but comes with two disadvantages. First, the index frames of the individual bqb files

become invalid, such that the resulting large trajectory does not possess a valid index.

Secondly, it requires a factor 2 overhead of disk space (at least temporary, if the small files

are deleted aferwards).

A much more elegant solution is to use so-called list files. A list file is not a bqb file, but a text

file which contains the string „BLIST“ in its first line (all uppercase and without any leading

characters). In all following lines, „true“ bqb files can be specified. This is done either by

giving a relative path (which is always evaluated relative to the location of the list file) or by

giving an absolute path. Nesting of list files is currently not allowed (i. e., a line in a list file

may not point to another list file). List files should always carry the file extension „.blist“

(see section 5.4).

List files are handled transparently in the background. This means that an application which

supports the bqb format cannot tell the difference between a list file and a „true“ bqb file; it

would behave identically in both cases. If every entry of the list file possesses a valid index

frame, it is easy to reconstruct a joint index for the list file from this information. Therefore,

the list file behaves as it would possess a valid index in this case, allowing for random access.

Let’s consider a simple example. The following list file invokes three bqb files. The first two

are specified by relative path. The first one resides in a subdirectory with respect to the list

file. The second one is found in the parent directory of the list file. The third one is named by

absolute path.

BLIST

subdir/file1.bqb

../file2.bqb

/home/brehm/calc/subdir/file3.bqb

- 10 -

6. Contact

If you would like to report a bug or have comments or suggestions on the bqbtool, please

feel free to contact the developers via mail:

The mail address is embedded as an image to keep away spam bots. A clickable version

(which is of course also well protected (-:) can be found on

https://brehm-research.de/contact

7. Literature

[1] M. Brehm, M. Thomas: "An Efficient Lossless Compression Algorithm for Trajectories of
Atom Positions and Volumetric Data", J. Chem. Inf. Model. 2018, in press,
DOI 10.1021/acs.jcim.8b00501

[2] http://www.travis-analyzer.de

[3] M. Brehm, B. Kirchner: "TRAVIS - A free Analyzer and Visualizer for Monte Carlo and
Molecular Dynamics Trajectories", J. Chem. Inf. Model. 2011, 51 (8), pp 2007-2023.

[4] XMol XYZ File Format:
http://www.ccl.net/chemistry/resources/messages/1996/10/21.005-dir/index.html

[5] Gaussian Cube File Format: http://paulbourke.net/dataformats/cube/

[6] M. Thomas, M. Brehm, B. Kirchner: "Voronoi dipole moments for the simulation of bulk
phase vibrational spectra", Phys. Chem. Chem. Phys. 2015, 17, pp 3207-3213.

[7] M. Thomas, B. Kirchner: "Classical Magnetic Dipole Moments for the Simulation of
Vibrational Circular Dichroism by ab Initio Molecular Dynamics",
J. Phys. Chem. Lett. 2016, 7, pp 509-513.

[8] M. Brehm, M. Thomas: "Computing Bulk Phase Raman Optical Activity Spectra from ab
initio Molecular Dynamics Simulations", J. Phys. Chem. Lett. 2017, 8 (14), pp 3409-3414.

